·9月4日 Codeforces Round #505 题目链接:http://codeforces.com/contest/1025
A - Doggo Recoloring
过水,就不说了。。
B - Weakened Common Divisor
思路: 首先我们不难想到将每一对数乘起来,然后求这些乘积的GCD,如果这个GCD为1则应该输出-1。但是这个GCD不一定是答案,但答案一定是这个GCD的约数。这时我就想到了找这个GCD最小的约数做为答案,但这样是会T的。于是我们考虑造成GCD不一定是答案的原因,然后我们可以将这个GCD与每一对中的一个数再求一遍GCD,这样的答案就是符合要求的了。
代码:
1 |
|
C - Plasticine zebra
思路: 一开始什么思路都没有,卡了很久。后面有一种直觉就是如果头和尾相等,那么如何翻转都是不会增加答案的(虽然一直不会证明)。
设$1-i$的字符串为’zebra’,这样的话只要头尾不相等,在位置$i$进行一次操作,这样’zebra’的长度一定会增加。由于开始提到的‘直觉’,只要操作后头和尾相等就break出循环。
后面看了题解后,就更加奇怪了,不明白自己这种乱搞的做法为什么是对的。
代码:
1 |
|
D - Recovering BST
思路: 其实这和平衡树并没有半毛钱关系,只是根据BST的性质让你做区间DP。
对于一个递增序列,你可以任意选一个数作为BST的根,这个数将序列分为两部分,分别作为这个根的左子树和右子树。然后这两个部分又是递增序列,于是可以这样递归下去DP。
大致的思路是这样,但要注意一些细节。首先是要记忆化以保证复杂度,然后就是要记录自己序列是在左子树还是右子树,以便判断是否符合要求(也就是边两端的数GCD>1)。
代码:
1 |
|